Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 167-170, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2018758

RESUMEN

Monitoring the evolution of the Covid19 pandemic constitutes a critical step in sanitary policy design. Yet, the assessment of the pandemic intensity within the pandemic period remains a challenging task because of the limited quality of data made available by public health authorities (missing data, outliers and pseudoseasonalities, notably), that calls for cumbersome and ad-hoc preprocessing (denoising) prior to estimation. Recently, the estimation of the reproduction number, a measure of the pandemic intensity, was formulated as an inverse problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that formulation lacks robustness against the limited quality of the Covid19 data and confidence assessment. The present work aims to address both limitations: First, it discusses solutions to produce a robust assessment of the pandemic intensity by accounting for the low quality of the data directly within the inverse problem formulation. Second, exploiting a Bayesian interpretation of the inverse problem formulation, it devises a Monte Carlo sampling strategy, tailored to a nonsmooth log-concave a posteriori distribution, to produce relevant credibility interval-based estimates for the Covid19 reproduction number. Clinical relevance Applied to daily counts of new infections made publicly available by the Health Authorities for around 200 countries, the proposed procedures permit robust assessments of the time evolution of the Covid19 pandemic intensity, updated automatically and on a daily basis.


Asunto(s)
COVID-19 , Pandemias , Teorema de Bayes , COVID-19/epidemiología , Humanos , Método de Montecarlo , Reproducción
2.
IEEE Transactions on Signal Processing ; 70:2859-2868, 2022.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1901511

RESUMEN

Daily pandemic surveillance, often achieved through the estimation of the reproduction number, constitutes a critical challenge for national health authorities to design counter-measures. In an earlier work, we proposed to formulate the estimation of the reproduction number as an optimization problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that first formulation significantly lacks robustness against the Covid-19 data low quality (irrelevant or missing counts, pseudo-seasonalities,...) stemming from the emergency and crisis context, which significantly impairs accurate pandemic evolution assessments. The present work aims to overcome these limitations by carefully crafting a functional permitting to estimate jointly, in a single step, the reproduction number and outliers defined to model low quality data. This functional also enforces epidemiology-driven regularity properties for the reproduction number estimates, while preserving convexity, thus permitting the design of efficient minimization algorithms, based on proximity operators that are derived analytically. The explicit convergence of the proposed algorithm is proven theoretically. Its relevance is quantified on real Covid-19 data, consisting of daily new infection counts for 200+ countries and for the 96 metropolitan France counties, publicly available at Johns Hopkins University and Santé-Publique-France. The procedure permits automated daily updates of these estimates, reported via animated and interactive maps. Open-source estimation procedures will be made publicly available. [ FROM AUTHOR] Copyright of IEEE Transactions on Signal Processing is the property of IEEE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
PLoS One ; 15(8): e0237901, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-723873

RESUMEN

Among the different indicators that quantify the spread of an epidemic such as the on-going COVID-19, stands first the reproduction number which measures how many people can be contaminated by an infected person. In order to permit the monitoring of the evolution of this number, a new estimation procedure is proposed here, assuming a well-accepted model for current incidence data, based on past observations. The novelty of the proposed approach is twofold: 1) the estimation of the reproduction number is achieved by convex optimization within a proximal-based inverse problem formulation, with constraints aimed at promoting piecewise smoothness; 2) the approach is developed in a multivariate setting, allowing for the simultaneous handling of multiple time series attached to different geographical regions, together with a spatial (graph-based) regularization of their evolutions in time. The effectiveness of the approach is first supported by simulations, and two main applications to real COVID-19 data are then discussed. The first one refers to the comparative evolution of the reproduction number for a number of countries, while the second one focuses on French departments and their joint analysis, leading to dynamic maps revealing the temporal co-evolution of their reproduction numbers.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Modelos Estadísticos , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Análisis Espacio-Temporal , Algoritmos , COVID-19 , Infecciones por Coronavirus/virología , Bases de Datos Factuales , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Francia/epidemiología , Humanos , Pandemias , Neumonía Viral/virología , Distribución de Poisson , SARS-CoV-2 , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA